Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
ACS Med Chem Lett ; 14(6): 757-765, 2023 Jun 08.
Artigo em Inglês | MEDLINE | ID: covidwho-20244990

RESUMO

Targeting structured RNA elements in the SARS-CoV-2 viral genome with small molecules is an attractive strategy for pharmacological control over viral replication. In this work, we report the discovery of small molecules that target the frameshifting element (FSE) in the SARS-CoV-2 RNA genome using high-throughput small-molecule microarray (SMM) screening. A new class of aminoquinazoline ligands for the SARS-CoV-2 FSE are synthesized and characterized using multiple orthogonal biophysical assays and structure-activity relationship (SAR) studies. This work reveals compounds with mid-micromolar binding affinity (KD = 60 ± 6 µM) to the FSE RNA and supports a binding mode distinct from previously reported FSE binders MTDB and merafloxacin. In addition, compounds are active in in vitro dual-luciferase and in-cell dual-fluorescent-reporter frameshifting assays, highlighting the promise of targeting structured elements of RNAs with druglike compounds to alter expression of viral proteins.

2.
J Med Virol ; 95(5): e28805, 2023 05.
Artigo em Inglês | MEDLINE | ID: covidwho-20243153

RESUMO

HH-120, a recently developed IgM-like ACE2 fusion protein with broad-spectrum neutralizing activity against all ACE2-utilizing coronaviruses, has been developed as a nasal spray for use as an early treatment agent to reduce disease progression and airborne transmission. The objective of this study was to evaluate the safety and efficacy of the HH-120 nasal spray in SARS-CoV-2-infected subjects. Eligible symptomatic or asymptomatic SARS-CoV-2-infected participants were enrolled in a single-arm trial to receive the HH-120 nasal spray for no longer than 6 days or until viral clearance at a single hospital between August 3 and October 7, 2022. An external control was built from real-world data of SARS-CoV-2-infected subjects contemporaneously hospitalized in the same hospital using a propensity score matching (PSM) method. After PSM, 65 participants in the HH-120 group and 103 subjects with comparable baseline characteristics in the external control group were identified. The viral clearance time was significantly shorter in participants receiving the HH-120 nasal spray than that in subjects of the control group (median 8 days vs. 10 days, p < 0.001); the difference was more prominent in those subgroup subjects with higher baseline viral load (median 7.5 days vs. 10.5 days, p < 0.001). The incidence of treatment-emergent adverse events and treatment-related adverse events of HH-120 group were 35.1% (27/77) and 3.9% (3/77), respectively. All the adverse events observed were mild, being of CTCAE grade 1 or 2, and transient. The HH-120 nasal spray showed a favorable safety profile and promising antiviral efficacy in SARS-CoV-2-infected subjects. The results from this study warrant further assessment of the efficacy and safety of the HH-120 nasal spray in large-scale randomized controlled clinical trials.


Assuntos
Enzima de Conversão de Angiotensina 2 , COVID-19 , Humanos , Sprays Nasais , SARS-CoV-2 , Estudos de Coortes , Pontuação de Propensão , Imunoglobulina M
3.
Mol Cell Proteomics ; 22(2): 100493, 2023 02.
Artigo em Inglês | MEDLINE | ID: covidwho-2268987

RESUMO

Serum antibodies IgM and IgG are elevated during Coronavirus Disease 2019 (COVID-19) to defend against viral attacks. Atypical results such as negative and abnormally high antibody expression were frequently observed whereas the underlying molecular mechanisms are elusive. In our cohort of 144 COVID-19 patients, 3.5% were both IgM and IgG negative, whereas 29.2% remained only IgM negative. The remaining patients exhibited positive IgM and IgG expression, with 9.3% of them exhibiting over 20-fold higher titers of IgM than the others at their plateau. IgG titers in all of them were significantly boosted after vaccination in the second year. To investigate the underlying molecular mechanisms, we classed the patients into four groups with diverse serological patterns and analyzed their 2-year clinical indicators. Additionally, we collected 111 serum samples for TMTpro-based longitudinal proteomic profiling and characterized 1494 proteins in total. We found that the continuously negative IgM and IgG expression during COVID-19 were associated with mild inflammatory reactions and high T cell responses. Low levels of serum IgD, inferior complement 1 activation of complement cascades, and insufficient cellular immune responses might collectively lead to compensatory serological responses, causing overexpression of IgM. Serum CD163 was positively correlated with antibody titers during seroconversion. This study suggests that patients with negative serology still developed cellular immunity for viral defense and that high titers of IgM might not be favorable to COVID-19 recovery.


Assuntos
COVID-19 , Humanos , Proteômica , Anticorpos Antivirais , Imunoglobulina M , Imunoglobulina G
4.
Cell Death Dis ; 14(1): 66, 2023 01 28.
Artigo em Inglês | MEDLINE | ID: covidwho-2221801

RESUMO

Coronavirus disease 2019 (COVID-19) treatments are still urgently needed for critically and severely ill patients. Human umbilical cord-mesenchymal stem cells (hUC-MSCs) infusion has therapeutic benefits in COVID-19 patients; however, uncertain therapeutic efficacy has been reported in severe patients. In this study, we selected an appropriate cytokine, IL-18, based on the special cytokine expression profile in severe pneumonia of mice induced by H1N1virus to prime hUC-MSCs in vitro and improve the therapeutic effect of hUC-MSCs in vivo. In vitro, we demonstrated that IL-18-primed hUC-MSCs (IL18-hUCMSC) have higher proliferative ability than non-primed hUC-MSCs (hUCMSCcon). In addition, VCAM-1, MMP-1, TGF-ß1, and some chemokines (CCL2 and CXCL12 cytokines) are more highly expressed in IL18-hUCMSCs. We found that IL18-hUCMSC significantly enhanced the immunosuppressive effect on CD3+ T-cells. In vivo, we demonstrated that IL18-hUCMSC infusion could reduce the body weight loss caused by a viral infection and significantly improve the survival rate. Of note, IL18-hUCMSC can also significantly attenuate certain clinical symptoms, including reduced activity, ruffled fur, hunched backs, and lung injuries. Pathologically, IL18-hUCMSC transplantation significantly enhanced the inhibition of inflammation, viral load, fibrosis, and cell apoptosis in acute lung injuries. Notably, IL18-hUCMSC treatment has a superior inhibitory effect on T-cell exudation and proinflammatory cytokine secretion in bronchoalveolar lavage fluid (BALF). Altogether, IL-18 is a promising cytokine that can prime hUC-MSCs to improve the efficacy of precision therapy against viral-induced pneumonia, such as COVID-19.


Assuntos
COVID-19 , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Pneumonia Viral , Humanos , Camundongos , Animais , Interleucina-18/metabolismo , Cordão Umbilical/metabolismo , Linfócitos T/metabolismo , COVID-19/metabolismo , Citocinas/metabolismo , Pneumonia Viral/terapia , Pneumonia Viral/metabolismo , Terapia de Imunossupressão , Células-Tronco Mesenquimais/metabolismo
5.
Vaccines (Basel) ; 11(1)2023 Jan 16.
Artigo em Inglês | MEDLINE | ID: covidwho-2200956

RESUMO

To obtain more insight into IgM in anti-SARS-CoV-2 immunity a prospective cohort study was carried out in 32 volunteers to longitudinally profile the kinetics of the anti-SARS-CoV-2 IgM response induced by administration of a three-dose inactivated SARS-CoV-2 vaccine regimen at 19 serial time points over 456 days. The first and second doses were considered primary immunization, while the third dose was considered secondary immunization. IgM antibodies showed a low secondary response that was different from the other three antibodies (neutralizing, total, and IgG antibodies). There were 31.25% (10/32) (95% CI, 14.30-48.20%) of participants who never achieved a positive IgM antibody conversion over 456 days after vaccination. The seropositivity rate of IgM antibodies was 68.75% (22/32) (95% CI, 51.80-85.70%) after primary immunization. Unexpectedly, after secondary immunization the seropositivity response rate was only 9.38% (3/32) (95% CI, 1.30-20.10%), which was much lower than that after primary immunization (p = 0.000). Spearman's correlation analysis indicated a poor correlation of IgM antibodies with the other three antibodies. IgM response in vaccinees was completely different from the response patterns of neutralizing, total, and IgG antibodies following both the primary immunization and the secondary immunization and was suppressed by pre-existing immunity induced by primary immunization.

6.
Front Pharmacol ; 13: 955482, 2022.
Artigo em Inglês | MEDLINE | ID: covidwho-2154780

RESUMO

Until today, the coronavirus disease 2019 (COVID-19) pandemic has caused 6,043,094 deaths worldwide, and most of the mortality cases have been related to patients with long-term diseases, especially cancer. Autophagy is a cellular process for material degradation. Recently, studies demonstrated the association of autophagy with cancer development and immune disorder, suggesting autophagy as a possible target for cancer and immune therapy. Laminarin is a polysaccharide commonly found in brown algae and has been reported to have pharmaceutic roles in treating human diseases, including cancers. In the present report, we applied network pharmacology with systematic bioinformatic analysis, including gene ontology (GO) enrichment, Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis, reactome pathway analysis, and molecular docking to determine the pharmaceutic targets of laminarin against COVID-19 and cervical cancer via the autophagic process. Our results showed that the laminarin would target ten genes: CASP8, CFTR, DNMT1, HPSE, KCNH2, PIK3CA, PIK3R1, SERPINE1, TLR4, and VEGFA. The enrichment analysis suggested their involvement in cell death, immune responses, apoptosis, and viral infection. In addition, molecular docking further demonstrated the direct binding of laminarin to its target proteins, VEGFA, TLR4, CASP8, and PIK3R1. The present findings provide evidence that laminarin could be used as a combined therapy for treating patients with COVID-19 and cervical cancer.

7.
Life Sci Alliance ; 6(1)2023 01.
Artigo em Inglês | MEDLINE | ID: covidwho-2081440

RESUMO

Coronavirus disease 2019 (COVID-19) patients with liver dysfunction (LD) have a higher chance of developing severe and critical disease. The routine hepatic biochemical parameters ALT, AST, GGT, and TBIL have limitations in reflecting COVID-19-related LD. In this study, we performed proteomic analysis on 397 serum samples from 98 COVID-19 patients to identify new biomarkers for LD. We then established 19 simple machine learning models using proteomic measurements and clinical variables to predict LD in a development cohort of 74 COVID-19 patients with normal hepatic biochemical parameters. The model based on the biomarker ANGL3 and sex (AS) exhibited the best discrimination (time-dependent AUCs: 0.60-0.80), calibration, and net benefit in the development cohort, and the accuracy of this model was 69.0-73.8% in an independent cohort. The AS model exhibits great potential in supporting optimization of therapeutic strategies for COVID-19 patients with a high risk of LD. This model is publicly available at https://xixihospital-liufang.shinyapps.io/DynNomapp/.


Assuntos
COVID-19 , Hepatopatias , Humanos , Proteômica , Aprendizado de Máquina
8.
Frontiers in pharmacology ; 13, 2022.
Artigo em Inglês | EuropePMC | ID: covidwho-1999029

RESUMO

Until today, the coronavirus disease 2019 (COVID-19) pandemic has caused 6,043,094 deaths worldwide, and most of the mortality cases have been related to patients with long-term diseases, especially cancer. Autophagy is a cellular process for material degradation. Recently, studies demonstrated the association of autophagy with cancer development and immune disorder, suggesting autophagy as a possible target for cancer and immune therapy. Laminarin is a polysaccharide commonly found in brown algae and has been reported to have pharmaceutic roles in treating human diseases, including cancers. In the present report, we applied network pharmacology with systematic bioinformatic analysis, including gene ontology (GO) enrichment, Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis, reactome pathway analysis, and molecular docking to determine the pharmaceutic targets of laminarin against COVID-19 and cervical cancer via the autophagic process. Our results showed that the laminarin would target ten genes: CASP8, CFTR, DNMT1, HPSE, KCNH2, PIK3CA, PIK3R1, SERPINE1, TLR4, and VEGFA. The enrichment analysis suggested their involvement in cell death, immune responses, apoptosis, and viral infection. In addition, molecular docking further demonstrated the direct binding of laminarin to its target proteins, VEGFA, TLR4, CASP8, and PIK3R1. The present findings provide evidence that laminarin could be used as a combined therapy for treating patients with COVID-19 and cervical cancer.

9.
Nat Chem Biol ; 18(11): 1214-1223, 2022 11.
Artigo em Inglês | MEDLINE | ID: covidwho-1991635

RESUMO

The E3 ligase TRIM7 has emerged as a critical player in viral infection and pathogenesis. However, the mechanism governing the TRIM7-substrate association remains to be defined. Here we report the crystal structures of TRIM7 in complex with 2C peptides of human enterovirus. Structure-guided studies reveal the C-terminal glutamine residue of 2C as the primary determinant for TRIM7 binding. Leveraged by this finding, we identify norovirus and SARS-CoV-2 proteins, and physiological proteins, as new TRIM7 substrates. Crystal structures of TRIM7 in complex with multiple peptides derived from SARS-CoV-2 proteins display the same glutamine-end recognition mode. Furthermore, TRIM7 could trigger the ubiquitination and degradation of these substrates, possibly representing a new Gln/C-degron pathway. Together, these findings unveil a common recognition mode by TRIM7, providing the foundation for further mechanistic characterization of antiviral and cellular functions of TRIM7.


Assuntos
COVID-19 , Ubiquitina-Proteína Ligases , Humanos , Ubiquitina-Proteína Ligases/metabolismo , Glutamina/metabolismo , SARS-CoV-2 , Ubiquitinação , Antivirais , Proteínas com Motivo Tripartido/metabolismo
10.
Cell Discov ; 8(1): 70, 2022 Jul 25.
Artigo em Inglês | MEDLINE | ID: covidwho-1960340

RESUMO

Little is known regarding why a subset of COVID-19 patients exhibited prolonged positivity of SARS-CoV-2 infection. Here, we found that patients with long viral RNA course (LC) exhibited prolonged high-level IgG antibodies and higher regulatory T (Treg) cell counts compared to those with short viral RNA course (SC) in terms of viral load. Longitudinal proteomics and metabolomics analyses of the patient sera uncovered that prolonged viral RNA shedding was associated with inhibition of the liver X receptor/retinoid X receptor (LXR/RXR) pathway, substantial suppression of diverse metabolites, activation of the complement system, suppressed cell migration, and enhanced viral replication. Furthermore, a ten-molecule learning model was established which could potentially predict viral RNA shedding period. In summary, this study uncovered enhanced inflammation and suppressed adaptive immunity in COVID-19 patients with prolonged viral RNA shedding, and proposed a multi-omic classifier for viral RNA shedding prediction.

11.
China Econ Rev ; 75: 101832, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: covidwho-1926287

RESUMO

The COVID-19 pandemic shocked the economy of China in early 2020. Strict lockdown measures were implemented nationwide to prevent the further spread of the virus. During the lockdown period, many economic activities were affected, which had repercussions for the nation's overall employment. Vocational graduates were among the most affected by the crisis. To estimate the causal effects of COVID-19 on the full-time employment of vocational high school graduates as well as their monthly income and hours worked by week, we exploit variations in the intensity of the pandemic in time and across space using survey data from vocational schools from six provinces in China. The results of the difference-in-differences (DID) estimates indicate that being located in counties with high pandemic intensity significantly reduced both the employment in full-time jobs of vocational graduates as well as their monthly income. Our study's analysis demonstrates that the effects of COVID-19 on the labor market can be attributed to the large-scale contraction of labor demand of the enterprises that were hiring vocational graduates. To cope with this situation, vocational graduates took various measures, including reducing consumption, drawing on their savings, searching for new jobs, taking on part-time jobs, borrowing money, and attending new training programs. In addition, the empirical analysis finds that there were heterogeneous effects with respect to gender, family social capital, the industry in which the vocational graduate was participating, and whether the individual was in a management position.

12.
Front Pharmacol ; 13: 879733, 2022.
Artigo em Inglês | MEDLINE | ID: covidwho-1862647

RESUMO

Porcine epidemic diarrhea virus (PEDV) is an alphacoronavirus (α-CoV) that causes high mortality in suckling piglets, leading to severe economic losses worldwide. No effective vaccine or commercial antiviral drug is readily available. Several replicative enzymes are responsible for coronavirus replication. In this study, the potential candidates targeting replicative enzymes (PLP2, 3CLpro, RdRp, NTPase, and NendoU) were screened from 187,119 compounds in ZINC natural products library, and seven compounds had high binding potential to NTPase and showed drug-like property. Among them, ZINC12899676 was identified to significantly inhibit the NTPase activity of PEDV by targeting its active pocket and causing its conformational change, and ZINC12899676 significantly inhibited PEDV replication in IPEC-J2 cells. It first demonstrated that ZINC12899676 inhibits PEDV replication by targeting NTPase, and then, NTPase may serve as a novel target for anti-PEDV.

13.
Signal Transduct Target Ther ; 7(1): 137, 2022 04 25.
Artigo em Inglês | MEDLINE | ID: covidwho-1805598

RESUMO

Whether and how innate antiviral response is regulated by humoral metabolism remains enigmatic. We show that viral infection induces progesterone via the hypothalamic-pituitary-adrenal axis in mice. Progesterone induces downstream antiviral genes and promotes innate antiviral response in cells and mice, whereas knockout of the progesterone receptor PGR has opposite effects. Mechanistically, stimulation of PGR by progesterone activates the tyrosine kinase SRC, which phosphorylates the transcriptional factor IRF3 at Y107, leading to its activation and induction of antiviral genes. SARS-CoV-2-infected patients have increased progesterone levels, and which are co-related with decreased severity of COVID-19. Our findings reveal how progesterone modulates host innate antiviral response, and point to progesterone as a potential immunomodulatory reagent for infectious and inflammatory diseases.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Antivirais , COVID-19/genética , Humanos , Sistema Hipotálamo-Hipofisário , Imunidade Inata/genética , Camundongos , Sistema Hipófise-Suprarrenal , Progesterona/farmacologia
14.
J Sci Food Agric ; 102(12): 5460-5467, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: covidwho-1800382

RESUMO

BACKGROUND: Nasopharyngeal carcinoma (NPC) is publicly known as a malignant tumor. Our previous study reported that plumbagin exhibits potent anti-cancer actions. Nevertheless, more mechanical details of plumbagin against NPC remain unknown. The present study aimed to unmask the core targets/genes and anti-NPC mechanisms involved in the signaling pathways of plumbagin prior to biochemical validation. METHODS: A network pharmacology approach was employed to respective identification of mutual and core targets/genes in plumbagin and/treating NPC. Molecular docking determination was used to identify core target proteins for biochemical validation using human and cell line samples. RESULTS: In total, 60 anti-NPC genes of plumbagin were screened out, and then nine core target genes of plumbagin against NPC were identified accordingly. The enrichment findings revealed detailed biological functions and pharmacological pathways of plumbagin against NPC. Moreover, in silico analysis using molecular docking had determined the core targets for further experimental validation, comprising protein kinase B (AKT1) and sarcoma gene (SRC). In human sample validation, clinical NPC sections showed increased positive expression of AKT1 and SRC. Additionally, plumbagin-treated NPC cells resulted in inactivated protein expression of AKT1 and SRC. CONCLUSION: The re-identified core targets/genes in the molecular docking report may function as plumbagin-related pharmacological targets for treating NPC via experimental validation. Furthermore, additional anti-NPC molecular mechanisms of plumbagin action were disclosed on the basis of enrichment findings. © 2022 Society of Chemical Industry.


Assuntos
Naftoquinonas , Neoplasias Nasofaríngeas , Humanos , Simulação de Acoplamento Molecular , Naftoquinonas/química , Naftoquinonas/farmacologia , Carcinoma Nasofaríngeo/tratamento farmacológico , Carcinoma Nasofaríngeo/genética , Neoplasias Nasofaríngeas/tratamento farmacológico , Neoplasias Nasofaríngeas/genética , Neoplasias Nasofaríngeas/metabolismo
15.
Adv Sci (Weinh) ; 9(14): e2104333, 2022 05.
Artigo em Inglês | MEDLINE | ID: covidwho-1782562

RESUMO

Coronavirus disease 2019 (COVID-19) remains a global public health threat. Hence, more effective and specific antivirals are urgently needed. Here, COVID-19 hyperimmune globulin (COVID-HIG), a passive immunotherapy, is prepared from the plasma of healthy donors vaccinated with BBIBP-CorV (Sinopharm COVID-19 vaccine). COVID-HIG shows high-affinity binding to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike (S) protein, the receptor-binding domain (RBD), the N-terminal domain of the S protein, and the nucleocapsid protein; and blocks RBD binding to human angiotensin-converting enzyme 2 (hACE2). Pseudotyped and authentic virus-based assays show that COVID-HIG displays broad-spectrum neutralization effects on a wide variety of SARS-CoV-2 variants, including D614G, Alpha (B.1.1.7), Beta (B.1.351), Gamma (P.1), Kappa (B.1.617.1), Delta (B.1.617.2), and Omicron (B.1.1.529) in vitro. However, a significant reduction in the neutralization titer is detected against Beta, Delta, and Omicron variants. Additionally, assessments of the prophylactic and treatment efficacy of COVID-HIG in an Adv5-hACE2-transduced IFNAR-/- mouse model of SARS-CoV-2 infection show significantly reduced weight loss, lung viral loads, and lung pathological injury. Moreover, COVID-HIG exhibits neutralization potency similar to that of anti-SARS-CoV-2 hyperimmune globulin from pooled convalescent plasma. Overall, the results demonstrate the potential of COVID-HIG against SARS-CoV-2 infection and provide reference for subsequent clinical trials.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Globulinas , Animais , COVID-19/terapia , Globulinas/uso terapêutico , Humanos , Imunização Passiva , Camundongos , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Soroterapia para COVID-19
16.
Public Health ; 203: 65-74, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: covidwho-1629795

RESUMO

OBJECTIVES: This study aimed to evaluate the socio-economic burden imposed on the Chinese healthcare system during the coronavirus disease 2019 (COVID-19) pandemic. STUDY DESIGN: A cross-sectional study was used to investigate how COVID-19 impacted health and medical costs in China. Data were derived from a subdivision of the Centers for Disease control and Prevention of China. METHODS: We prospectively collected information from the Centers for Disease Control and Prevention and the designated hospitals to determine the cost of public health care and hospitalisation due to COVID-19. We estimated the resource use and direct medical costs associated with public health. RESULTS: The average costs, per case, for specimen collection and nucleic acid testing (NAT [specifically, polymerase chain reaction {PCR}]) in low-risk populations were $29.49 and $53.44, respectively; however, the average cost of NAT in high-risk populations was $297.94 per capita. The average costs per 1000 population for epidemiological surveys, disinfectant, health education and centralised isolation were $49.54, $247.01, $90.22 and $543.72, respectively. A single hospitalisation for COVID-19 in China cost a median of $2158.06 ($1961.13-$2325.65) in direct medical costs incurred only during hospitalisation, whereas the total costs associated with hospitalisation of patients with COVID-19 were estimated to have reached nearly $373.20 million in China as of 20, May, 2020. The cost of public health care associated with COVID-19 as of 20, May, 2020 ($6.83 billion) was 18.31 times that of hospitalisation. CONCLUSIONS: This study highlights the magnitude of resources needed to treat patients with COVID-19 and control the COVID-19 pandemic. Public health measures implemented by the Chinese government have been valuable in reducing the infection rate and may be cost-effective ways to control emerging infectious diseases.


Assuntos
COVID-19 , China/epidemiologia , Efeitos Psicossociais da Doença , Estudos Transversais , Estresse Financeiro , Custos de Cuidados de Saúde , Hospitalização , Humanos , Pandemias , Saúde Pública , SARS-CoV-2
17.
Bioengineered ; 12(2): 12461-12469, 2021 12.
Artigo em Inglês | MEDLINE | ID: covidwho-1585255

RESUMO

Severe mortality due to the COVID-19 pandemic resulted from the lack of effective treatment. Although COVID-19 vaccines are available, their side effects have become a challenge for clinical use in patients with chronic diseases, especially cancer patients. In the current report, we applied network pharmacology and systematic bioinformatics to explore the use of biochanin A in patients with colorectal cancer (CRC) and COVID-19 infection. Using the network pharmacology approach, we identified two clusters of genes involved in immune response (IL1A, IL2, and IL6R) and cell proliferation (CCND1, PPARG, and EGFR) mediated by biochanin A in CRC/COVID-19 condition. The functional analysis of these two gene clusters further illustrated the effects of biochanin A on interleukin-6 production and cytokine-cytokine receptor interaction in CRC/COVID-19 pathology. In addition, pathway analysis demonstrated the control of PI3K-Akt and JAK-STAT signaling pathways by biochanin A in the treatment of CRC/COVID-19. The findings of this study provide a therapeutic option for combination therapy against COVID-19 infection in CRC patients.


Assuntos
Anticarcinógenos/uso terapêutico , Antivirais/uso terapêutico , Tratamento Farmacológico da COVID-19 , Neoplasias Colorretais/tratamento farmacológico , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Genisteína/uso terapêutico , Fitoestrógenos/uso terapêutico , Atlas como Assunto , COVID-19/imunologia , COVID-19/patologia , COVID-19/virologia , Neoplasias Colorretais/imunologia , Neoplasias Colorretais/patologia , Neoplasias Colorretais/virologia , Ciclina D1/genética , Ciclina D1/imunologia , Receptores ErbB/genética , Receptores ErbB/imunologia , Humanos , Interleucina-1alfa/genética , Interleucina-1alfa/imunologia , Interleucina-2/genética , Interleucina-2/imunologia , Janus Quinases/genética , Janus Quinases/imunologia , Redes e Vias Metabólicas/efeitos dos fármacos , Redes e Vias Metabólicas/genética , Terapia de Alvo Molecular/métodos , Família Multigênica , Farmacologia em Rede/métodos , PPAR gama/genética , PPAR gama/imunologia , Farmacogenética/métodos , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/imunologia , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/imunologia , Receptores de Interleucina-6/genética , Receptores de Interleucina-6/imunologia , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/crescimento & desenvolvimento , SARS-CoV-2/patogenicidade , Fatores de Transcrição STAT/genética , Fatores de Transcrição STAT/imunologia , Transdução de Sinais
18.
Carbohydr Polym ; 285: 118971, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: covidwho-1549670

RESUMO

Ligusticum chuanxiong, the dried rhizome of Ligusticum chuanxiong Hort, has been widely applied in traditional Chinese medicine for treating plague, and it has appeared frequently in the prescriptions against COVID-19 lately. Ligusticum chuanxiong polysaccharide (LCPs) is one of the effective substances, which has various activities, such as, anti-oxidation, promoting immunity, anti-tumor, and anti-bacteria. The purified fractions of LCPs are considered to be pectic polysaccharides, which are mainly composed of GalA, Gal, Ara and Rha, and are generally linked by α-1,4-d-GalpA, α-1,2-l-Rhap, α-1,5-l-Araf, ß-1,3-d-Galp and ß-1,4-d-Galp, etc. The pectic polysaccharide shows an anti-infective inflammatory activity, which is related to antiviral infection of Ligusticum chuanxiong. In this article, the isolation, purification, structural features, and biological activities of LCPs in recent years are reviewed, and the potential of LCPs against viral infection as well as questions that need future research are discussed.


Assuntos
Tratamento Farmacológico da COVID-19 , Ligusticum/química , Polissacarídeos/química , Polissacarídeos/farmacologia , Adjuvantes Imunológicos/farmacologia , Adjuvantes Imunológicos/uso terapêutico , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Antivirais/farmacologia , Antivirais/uso terapêutico , COVID-19/virologia , Configuração de Carboidratos , Sequência de Carboidratos , Medicamentos de Ervas Chinesas , Humanos , Polissacarídeos/isolamento & purificação , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/isolamento & purificação
19.
Environ Sci Pollut Res Int ; 29(15): 22012-22030, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: covidwho-1514070

RESUMO

Coronavirus disease 2019 (COVID-19) continues as a global pandemic. Patients with lung cancer infected with COVID-19 may develop severe disease or die. Treating such patients severely burdens overwhelmed healthcare systems. Here, we identified potential pathological mechanisms shared between patients with COVID-19 and lung adenocarcinoma (LUAD). Co-expressed, differentially expressed genes (DEGs) in patients with COVID-19 and LUAD were identified and used to construct a protein-protein interaction (PPI) network and to perform enrichment analysis. We used the NetworkAnalyst platform to establish a co-regulatory of the co-expressed DEGs, and we used Spearman's correlation to evaluate the significance of associations of hub genes with immune infiltration and immune checkpoints. Analysis of three datasets identified 112 shared DEGs, which were used to construct a protein-PPI network. Subsequent enrichment analysis revealed co-expressed genes related to biological process (BP), molecular function (MF), and cellular component (CC) as well as to pathways, specific organs, cells, and diseases. Ten co-expressed hub genes were employed to construct a gene-miRNA, transcription factor (TF)-gene, and TF-miRNA network. Hub genes were significantly associated with immune infiltration and immune checkpoints. Finally, methylation level of hub genes in LUAD was obtained via UALCAN database. The present multi-dimensional study reveals commonality in specific gene expression by patients with COVID-19 and LUAD. These findings provide insights into developing strategies for optimising the management and treatment of patients with LUAD with COVID-19.


Assuntos
Adenocarcinoma de Pulmão , COVID-19 , Neoplasias Pulmonares , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/metabolismo , Adenocarcinoma de Pulmão/patologia , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , COVID-19/genética , Biologia Computacional/métodos , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Pulmonares/patologia
20.
Front Endocrinol (Lausanne) ; 12: 714909, 2021.
Artigo em Inglês | MEDLINE | ID: covidwho-1497067

RESUMO

Background: Clinically, evidence shows that uterine corpus endometrial carcinoma (UCEC) patients infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) may have a higher death-rate. However, current anti-UCEC/coronavirus disease 2019 (COVID-19) treatment is lacking. Plumbagin (PLB), a pharmacologically active alkaloid, is an emerging anti-cancer inhibitor. Accordingly, the current report was designed to identify and characterize the anti-UCEC function and mechanism of PLB in the treatment of patients infected with SARS-CoV-2 via integrated in silico analysis. Methods: The clinical analyses of UCEC and COVID-19 in patients were conducted using online-accessible tools. Meanwhile, in silico methods including network pharmacology and biological molecular docking aimed to screen and characterize the anti-UCEC/COVID-19 functions, bio targets, and mechanisms of the action of PLB. Results: The bioinformatics data uncovered the clinical characteristics of UCEC patients infected with SARS-CoV-2, including specific genes, health risk, survival rate, and prognostic index. Network pharmacology findings disclosed that PLB-exerted anti-UCEC/COVID-19 effects were achieved through anti-proliferation, inducing cytotoxicity and apoptosis, anti-inflammation, immunomodulation, and modulation of some of the key molecular pathways associated with anti-inflammatory and immunomodulating actions. Following molecular docking analysis, in silico investigation helped identify the anti-UCEC/COVID-19 pharmacological bio targets of PLB, including mitogen-activated protein kinase 3 (MAPK3), tumor necrosis factor (TNF), and urokinase-type plasminogen activator (PLAU). Conclusions: Based on the present bioinformatic and in silico findings, the clinical characterization of UCEC/COVID-19 patients was revealed. The candidate, core bio targets, and molecular pathways of PLB action in the potential treatment of UCEC/COVID-19 were identified accordingly.


Assuntos
Tratamento Farmacológico da COVID-19 , COVID-19 , Carcinoma Endometrioide , Neoplasias do Endométrio , Interações Hospedeiro-Patógeno , Naftoquinonas/farmacologia , Adulto , Idoso , Idoso de 80 Anos ou mais , COVID-19/complicações , COVID-19/diagnóstico , COVID-19/genética , Proteínas de Ligação ao Cálcio/efeitos dos fármacos , Proteínas de Ligação ao Cálcio/metabolismo , Carcinoma Endometrioide/complicações , Carcinoma Endometrioide/diagnóstico , Carcinoma Endometrioide/tratamento farmacológico , Carcinoma Endometrioide/genética , Biologia Computacional , Ensaios de Seleção de Medicamentos Antitumorais/métodos , Neoplasias do Endométrio/complicações , Neoplasias do Endométrio/diagnóstico , Neoplasias do Endométrio/tratamento farmacológico , Neoplasias do Endométrio/genética , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Redes Reguladoras de Genes/efeitos dos fármacos , Estudos de Associação Genética , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Interações Hospedeiro-Patógeno/genética , Humanos , Proteínas de Membrana/efeitos dos fármacos , Proteínas de Membrana/metabolismo , Pessoa de Meia-Idade , Proteína Quinase 3 Ativada por Mitógeno/efeitos dos fármacos , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Simulação de Acoplamento Molecular/métodos , Naftoquinonas/uso terapêutico , Prognóstico , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/fisiologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Fator de Necrose Tumoral alfa/efeitos dos fármacos , Fator de Necrose Tumoral alfa/metabolismo , Útero/efeitos dos fármacos , Útero/metabolismo , Útero/patologia , Útero/virologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA